
pubs.acs.org/jmc Published on Web 06/04/2010 r 2010 American Chemical Society

5002 J. Med. Chem. 2010, 53, 5002–5011

DOI: 10.1021/jm1004495

Scaffold Explorer: An Interactive Tool for Organizing and Mining Structure-Activity

Data Spanning Multiple Chemotypes

Dimitris K. Agrafiotis*,† and John J. M. Wiener‡

†Johnson & Johnson Pharmaceutical Research & Development, LLC, Welsh & McKean Roads, Spring House, Pennsylvania 19477, and
‡Johnson & Johnson Pharmaceutical Research & Development, LLC, 3210 Merryfield Road, San Diego, California 92121

Received April 13, 2010

We introduce Scaffold Explorer, an interactive tool that allows medicinal chemists to define hierarchies
of chemical scaffolds and use them to explore their project data. Scaffold Explorer allows the user to
construct a tree, where each node corresponds to a specific scaffold. Each node can have multiple
children, each ofwhich represents amore refined substructure relative to its parent node. Once the tree is
defined, it can be mapped onto any collection of compounds and be used as a navigational tool to
explore structure-activity relationships (SAR) across different chemotypes. The rich visual analytics of
Scaffold Explorer afford the user a “bird’s-eye” view of the chemical space spanned by a particular data
set, map any physicochemical property or biological activity of interest onto the individual scaffold
nodes, serve as an aggregator for the properties of the compounds represented by these nodes, and
quickly distinguish promising chemotypes from less interesting or problematic ones. Unlike previous
approaches, which focused on automated extraction and classification of scaffolds, the utility of the new
tool rests on its interactivity and ability to accommodate the medicinal chemists’ intuition by allowing
the use of arbitrary substructures containing variable atoms, bonds, and/or substituents such as those
employed in substructure search.

Introduction

Chemical Scaffolds. The concept of a chemical scaffold is
probably as old as medicinal chemistry itself. Scaffolds are
structural cores upon which different types of substituents
can be attached. In lead generation, scaffolds are embellished
through parallel synthesis and combinatorial chemistry to
produce large chemical libraries for high-throughput screen-
ing (HTS). In lead optimization, the same strategy is applied
on a smaller scale to improve an initial lead by optimizing
individual substitution sites in an iterative (and often re-
cursive) manner through successive rounds of synthesis and
biological testing. This process is repeated until the desired
potency, selectivity, orpharmacokineticparameters areachieved
or until the potential of the series is exhausted. In the latter case,
new chemical scaffolds are designed (often as variations of the
old ones through a process known as scaffold hopping1), new
sets of analogues are synthesized, and the cycle continues until a
promising clinical candidate emerges or the program is termi-
nated. In practice, medicinal chemistry teams tend to pursue
multiple series concurrently in order to maximize utilization of
resources and the probability of success.

Computer-based methods can be particularly effective in
analyzing and categorizing molecular graphs and have been
used extensively for identifying common scaffolds in large
collections of molecules. The most common application of
automated methods for scaffold classification is in assessing
the diversity of large chemical libraries and in analyzing hit

lists from high throughput screening experiments. These hits
tend tomirror the source libraries fromwhich they emerge, in
that they span multiple chemotypes and are highly hetero-
geneous in terms of structure, physicochemical properties,
and synthetic origin.Grouping them into related families not
only assists in hit confirmation and follow-up but also allows
more predictive local statistical models to be developed and
employed in guiding future rounds of analogue design.2-4

However, the ways scaffolds are understood by medicinal
chemists and computers are not always congruent. To a
medicinal chemist, a scaffold is a central core with clearly
defined substitution sites. To a computer, it is often an abstract
connectivity pattern that is present in a large groupofmolecules.
This is due to the fact thatmost automated scaffold classification
algorithms employ some formof clusteringdrivenbydescriptors
and similarity measures that look at abstract topological pat-
terns and do not explicitly consider the presence of structural
cores with well-defined variation patterns.5 While clustering
methods afford certain advantages, they are often misguided
by idiosyncratic patterns in molecular graphs and produce
groupings that look “unnatural” to a medicinal chemist. Their
most important limitation is that thepartitioningdepends on the
specific data set that is being clustered, themembership rules are
not easily interpretable, and the resulting clusters do not re-
present real equivalence classeswithunambiguous rules ofmem-
bership that are applicable to compounds beyond the original
training set. This makes the key determinants of biological
activity difficult to identify and even more difficult to exploit
in the design of improved analogues.

Scaffold Extraction/Visualization Tools. To address these
problems, several groups, most notably Nicolaou et al.6,7
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and Inglese et al.,8,9 have attempted to generate interpretable
structural motifs by identifying the maximum common
substructure of the molecules in each cluster in a separate
postprocessing step. However, because of the computational
cost of MCS,a this method is limited to relatively small
clusters and is sensitive to “outliers” which happen to fall
into a particular cluster because of their overall structure but
do not necessarily share a common scaffold with the other
molecules in that cluster.

While scaffolds are not required by definition to contain
rings, in practice most of them do. By reducing conforma-
tional flexibility, rings allow more precise positioning and
orientation of key pharmacophoric groups and a more
detailed mapping of the active site. The first systematic
analysis of ring structures present in drug molecules was
reported by Bemis and Murcko,10 who decomposed mole-
cules into ring systems, linkers, side chains, and frameworks
and looked at their relative frequency of occurrence in the
CMC database using various shape descriptors. The authors
defined ring systems as single or contiguous cycles that share
at least one edge, linkers as the paths connecting two ring
systems, side chains as the paths that are not part of a ring
system or a linker, and frameworks as the networks of
ring systems and linkers present in the molecule. Their
analysis was carried out at two levels of abstraction, one in
which only pure topology was considered (i.e., unlabeled
nodes and edges), and one where atom type, hybridization,
and bond order were also taken into account. Lewell and co-
workers later reported a web-searchable database of rings
that appear in drugs and demonstrated its utility in identify-
ing alternative chemical rings for scaffold hopping.11 Both of
thesemethods produced flat categorizations of ring scaffolds
as opposed to navigable hierarchies.

Hierarchical classifications of ring systems have been
reported by several authors, including Franco et al.,12

Schuffenhauer et al.,13,14 Wetzel et al.,15 and Wilkens et al.16 In
Franco’s approach, which is based on themolecular equivalence
work of Xu and Johnson,17 the levels of the hierarchy represent
different degrees of structural abstraction obtained by iterative
simplification of the parent molecule, followed by canonicaliza-
tion of the resulting structures. Four levels were defined: exact
molecules which sit at the leaves of the tree, cyclic systemswhich
arederived fromexactmolecules through removal of side chains,
cyclic system skeletons which are obtained from cyclic systems
by removing atomand bond type information (i.e., by setting all
atoms to carbon and all bonds to single), and reduced cyclic
systemskeletonswhichareobtained fromcyclic systemskeletons
by deleting all atoms attached to two other atoms. By mapping
compounds onto the tree and examining the relative occupancy
of actives and inactives at eachnode, one can assess the degree of
enrichment at several levels of structural resolution.

In Schuffenhauer’s scaffold tree,13 each node represents a
different ring system and the different levels of the hierarchy
are traversed through iterative removal of rings until a single
root ring is obtained. Just like any other ring-based method,
the initial set of rings is obtained by removing all side chains
from the target molecule. The resulting ring systems are
divided into smaller and smaller scaffolds by removing one
ring at a time using a set of prioritization rules, which ensure

that the order in which rings are removed is unambiguous
and deterministic. In general, central and more complex
rings are retained over peripheral simpler ones. The practical
implication of this approach is that any given ring scaffold
has a unique path leading up to it (i.e., it has only one parent).
Although this helps minimize tree size and complexity, it
complicates navigation, as the user needs to remember the
rules or rely on chemical searching to locate the scaffold of
interest. Furthermore, because the activity of a compound
can only be assigned to a single parent scaffold even though
multiple core scaffolds may be present in the same molecule,
the exploration and interpretation of SAR can be more
challenging.

This idea is further elaborated in Wetzel’s Scaffold
Hunter,15 a hierarchical tree-like representation of a set of
compounds constructed through automated fragmentation
of the original data set. The program determines which
molecules represent relevant, complex scaffolds and then
iteratively deconstructs those scaffolds one ring at a time to
create more general scaffolds. The resulting tree can be
associated with potency data. Notably, in the construc-
tion of this tree, intermediate “virtual” scaffolds that are
not represented by actual compounds in the original data
set but that may hold promise as structurally simpler
avenues toward comparable potency can be readily iden-
tified.

Wilkens et al16 did not impose a single parent constraint
but truncated the complexity of the tree by removing scaf-
folds that occurred only once. Their method proceeds by
identifying the base ring systems (contiguous cyclic sub-
graphs obtained when all linkers and side chains are re-
moved), recursively enumerating all their possible combi-
nations, and arranging them in a hierarchical manner.
Unlike Schuffenhauer’s method, no attempt was made to
prune more complex fused ring systems into smaller units.

An alternative approach specifically tailored to combi-
natorial libraries was described by Katritzky.18 Here, scaf-
folds were defined as invariant molecular frameworks that
are common in a large portion of the library, and a set of
rules was proposed to determine when two scaffolds should
be considered equivalent. The distinguishing element of this
scheme is that the scaffold is not defined in isolation but only
in reference to the other molecules in the library. The same
substructure in the same molecule may constitute a scaffold
if that molecule is part of library A and an appendage in
library B. The assignment depends on what other variations
of that structure are present in the library under considera-
tion. The classification scheme takes into account molecular
shapes, molecular pharmacophores, substituent orientation,
and substituent diversity, and designates scaffolds as equiva-
lent when the summed scores of the transformations that are
needed to convert one to another does not exceed a certain
threshold.

The recently reported open-source application SARANEA19

employs a “network-like similarity graph” for visualization and
analysis of structure-activity/selectivity relationships in vari-
ously sized compound data sets. In this approach, compounds
(each represented by a single node in the graph) are graphically
connected if their computationally determined similarity score is
above a set threshold. Resulting clusters of highly similar nodes
are grouped together and separated fromother clusters. Potency
is displayed using color-coding of nodes and, additionally, the
extent to which each compound represents a discontinuity in
SAR is shown by the size of that compound’s node.

aAbbreviations: SAR, structure-activity relationships; CatS,
cathepsin S; ABCD, advanced biological and chemical discovery;
3DX, third dimension explorer;MCS,maximum common substructure;
UI, user interface.
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The problem with the aforementioned techniques is that
the scaffolds are automatically extracted from the data set
by algorithmic means, typically through iterative pruning,
maximum common substructure (MCS), or some variation
thereof. While this approach may be suitable for analyzing
large chemical libraries of highly heterogeneous compounds
and for triaging hit lists from high throughput screening
campaigns, it leaves much to be desired in terms of organiz-
ing SAR data for the hit-to-lead and lead optimization
phases of a discovery project. In most drug discovery pro-
jects, scaffolds may be cyclic or acyclic, may contain com-
plete or partial appendages, and may include variable atoms
and bonds or larger substructures (e.g., atom X is either a
nitrogen or an oxygen; bond Z is double or aromatic, sub-
stituent Z is a 5- or 6-membered aromatic ring, etc). Indeed,
the most general definition of a scaffold is a substructure,
such as those employed for chemical database searching,
shared by a collection of molecules.

Scaffold Explorer. In this paper, we describe an interactive
tool called Scaffold Explorer that allows the user to con-
struct interactively any hierarchy of scaffolds, where each
scaffold represents any arbitrary substructure with variable
atoms, bonds, and/or substituents. Although the tree can
be populated through automated scaffold extraction algo-
rithms, its true power comes from allowing the users to
define the nature and hierarchy of the scaffolds themselves
in a way that mirrors their lead optimization strategy. The
substructures associated with each scaffold can be recur-
sively elaborated into increasingly refined substructures,
representing deeper nodes in the tree. This tree representa-
tion was designed specifically to mimic the iterative manner
in which medicinal chemists optimize compounds and ana-
lyze SARdata. This process involves exploring different core
scaffolds, different classes of substituents at each point of
variation around these scaffolds, different classes of substit-
uents around those substituents, etc., until the series is
thought to be exhausted or at least explored to a reasonable
degree. This concept is illustrated by the cathepsin S (CatS)
inhibitor program discussed below. For a typical discovery
project, the resulting hierarchies tend to comprise a few tens
of scaffolds with 3-5 levels of depth at most. Therefore, the
manual effort required to build and maintain these hierar-
chies is very small and well worth the flexibility that it
affords.

The Scaffold Explorer offers a rich set of data rendering
options that allow the user to obtain a “bird’s-eye” view of
the entire chemical space spanned by a particular data set,
identify the relative population of each scaffold class, map
any physicochemical property or biological activity of inter-
est onto the individual scaffold nodes, serve as an aggregator
for the properties of the compounds in each of these nodes,
and quickly distinguish promising chemotypes from less
interesting or problematic ones. The tool can be dynamically
connected to any SAR table and serve as an effective
navigational tool through linked selections and visualiza-
tions (vide infra). Scaffold Explorer is particularly useful in
conjunction with the recently described SAR maps,20,21

which provide more detailed views of the substituent
effects around each individual scaffold and can be very
effective in driving SAR discussions at project team meet-
ings. In the remaining paragraphs, we describe its core
features and demonstrate its practical utility with an internal
drug discovery project aimed at designing inhibitors for
CatS.

Methods

Third Dimension Explorer (3DX) and ABCD. The Scaffold
Explorer was implemented as a component of Third Dimension
Explorer (3DX), a .Net application designed to address a broad
range of data analysis and visualization needs in drug discovery.
3DX is part of a broader platform known as ABCD,22 which
aims to connect disparate pieces of chemical and pharma-
cological data into a unifying whole and provide discovery
scientists with tools that allow them to make informed, data-
driven decisions.

3DX is a table-oriented application, similar in concept to the
ubiquitous Microsoft Excel. A 3DX document contains a
collection of tables, each of which contains a collection of
columns and rows. Each column contains data of the same type,
such as strings, integers, floating point numbers, “fuzzy” or qua-
lified numbers (floating point numbers with range or uncer-
tainty qualifiers), number lists, dates, time intervals, chemical
structures and substructures, images, graphs, and many others.
Much of 3DX’s analytical power comes from its ability to
handle very large data sets through its embedded database
technology, to associate custom cell renderers with each data
type in the spreadsheet, and to visualize the entire data set using
a variety of custom viewers, such as 2D and 3D scatter plots,
histograms, heatmaps, correlation maps, SAR maps, and the
scaffold viewer described herein. The program offers a full
gamut of navigation and selection options, augmented through
linked visualizations and interactive filtering and querying.

3DX uses a plug-in architecture that allows new functionality
to be developed independently of the main application and
delivered to the user either automatically or as needed. Plug-
ins can be UI or non-UI driven and have full programmatic
access to the 3DXcore and the data, allowing them to create and
remove tables, insert and remove columns, edit data, create and
(re)arrange viewers, etc. Their functionality and implementa-
tion can be extremely diverse, bringing awealth of data retrieval,
processing, analysis, visualization, and reporting capabilities to
the end users, without requiring them to leave the application.
An array of powerful, chemically aware data mining tools
were introduced in this fashion, including exact structure, sub-
structure and similarity searching, structure alignment, maxi-
mum common substructure detection, chemotype classifica-
tion, R-group analysis, physicochemical property calculation,
combinatorial library generation, diversity analysis, and many
others. The plug-in architecture is also used to provide seamless
integration with the ABCD warehouse through the ABCD
wizard, a graphical query builder that allows users to mine the
ABCD database without requiring knowledge of SQL or its
relational schema and to retrieve the results in a variety of tabu-
lar formats.

Scaffold Explorer. The Scaffold Explorer is essentially an
editor that allows the user to define a scaffold tree and dynami-
cally “connect” it to an SAR table. A scaffold tree is a singly
rooted, acyclic graph, where each node has one parent (except
the root) and zero or more children. A node with no children is
referred to as a leaf or terminal node. The root node is always
present and cannot be deleted and is marked with a red outline
(Figure 1). Every node can be associated with a chemical sub-
structure, selected by double-clicking on the node and drawing
the pattern in the popup sketcher. If no structure is drawn, the
node is referred to as a “pass-through” node and includes all the
molecules contained in its parent node. Child nodes represent
scaffolds with more refined substructures than their parent
nodes, i.e., any specific molecule that contains the substructure
of a child node must also contain the substructure of its parent
node. Unlike automated scaffold extraction algorithms where
each scaffold is typically an exact molecule, the scaffolds in
Scaffold Explorer represent fully fledged chemical substructures
that can contain generic (query) atoms and bonds like those
employed in a typical substructure search (see Discussion).
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User Interface. The scaffold tree operates in two modes: (1)
edit mode, where the tree is constructed and arranged on the
drawing window, and (2) select mode, where nodes are used to
select/deselect the molecules in the current 3DX table that
contain the corresponding substructures. The user can switch
between the edit and pick modes by pressing the escape key or
clicking on the “mode” button on the bottom left of the viewer.
By default, the scaffold tree starts in the edit mode, with a single
empty root at the center.

New child nodes are created in edit mode by clicking the left
mouse button on an existing node (the parent) while pressing a
key modifier and dragging the new child node to its desired
position on the canvas. Tominimize the drawing effort, the child
node automatically inherits the substructure of its parent, which
can be edited by double-clicking on the new node, as described
above. While in edit mode, nodes can be selected and moved
anywhere on the drawing canvas either individually, as an entire
branch, or as any arbitrary subset of nodes selected by a lasso.
When a nonterminal node is selected, a transient rotation handle
appears centered at that node, which allows the user to rotate
that node and all of its children around the chosen reference
point. A number of additional editing functions are supported,
including panning, zooming, and adjustment of the nodes’ radii.

As soon as a node is edited using the sketcher, its color (and
that of all its descendants) turns to brown to indicate that they
are unmapped. Mapping is the process of associating the sub-
structures in the scaffold tree with the molecules in the current
3DX table and identifying which molecules fall into each scaf-
fold class. This mapping is initiated using an explicit command
in the toolbar or the context-sensitive menu.When the scaffolds
aremapped onto the current table, only themolecules contained
in the parent node are used as input for the child nodes, thus
significantly truncating the time required for substructure

searching. Once the tree is mapped, the nodes are color-coded
based on the aggregate activity of the compounds contained
within them (vide infra) and a vertical scale appears to the right
of each node. This vertical scale serves two purposes. The first is
to indicate the relative number of records that belong to each
scaffold class, which is indicated by the height of the vertical
gray bar on the left of the scale (if any of these records also
happen to be selected, they will be indicated by an additional
yellow bar overlaid with the gray one). The second is to visualize
the activities of the compounds that belong to that scaffold class,
which are indicated by individual tick marks on the right of the
scale. The activities can be read from any column in the current
table, which is selected using the Color dropdown box on the
right of the color scale. The minimum and maximum of the
activity scales of the individual scaffolds are all the same and are
controlled by the large color scale to the right of the tree.
Adjusting the color scale also adjusts the individual activity
scales on each of the tree nodes.

When mapped, each scaffold node contains a subset of
molecules from the current table and can thus serve as an
aggregator of these molecules. If an activity column is selected,
the background color of each node will be determined by the
aggregate activity of all the molecules that fall into that scaffold
class, using the color mapping of the large color scale on the
right-hand side of the viewer (blue to white to red). Four aggre-
gation functions are supported (minimum, maximum, average,
and median) and can be interactively changed using the Aggre-
gation dropdownbox on the lower left corner of the viewer. If no
molecules fall under a particular scaffold class, the correspond-
ing node is colored gray.

The activity of the current molecule (the molecule that the
user last clicked on in order to inspect its contents) is also
indicated with a green triangle to the right of the activity tick

Figure 1. User interface elements of the Scaffold Explorer.



5006 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 13 Agrafiotis and Wiener

marks on each scaffold node. Note that the same molecule may
belong to multiple scaffold classes, and there will be a green
arrow for each class where the current molecule is mapped.

Additional features are available through the context-
sensitive menu, accessible by right-clicking over the drawing
canvas and/or a node. The user interface is illustrated in Figure 1,
and the context-sensitive menu commands, mouse controls, and
keyboard shortcuts are detailed in Tables 1-3.

Implementation. The Scaffold Explorer was implemented as a
.Net control and was written in C# using the GDIþ graphics
library available in .Net.

Discussion

In general, a data set with a large number of unique
compounds presents the analyst with a significant challenge.
These sets are likely to include an array of series and subseries,
each with its own biological profile and issues. As discussed,
meaningful visualizationof such large numbers of compounds
can be difficult;a simple tabular representation is far from
sufficient given the number of substituents that are vari-
able, not to mention the numbers of substituents on those
substituents that are, in turn, variable. We demonstrate the
utility of Scaffold Explorer in providing readily viewable and

information-rich hierarchical structure analyses of the sub-
classes within a parent chemical series with a case study using
data drawn from a CatS inhibitor program.

CatS Inhibitor Program. CatS is a cysteine protease that
mediates cleavage of the major histocompatibility class II
(MHC II)-associated invariant chain (Ii), one step in the
sequence of events leading to antigen presentation on the
cell surface and thus a key constituent of an immune res-
ponse.23-27 For this reason, CatS inhibitors have been pro-
posed for treatment of various autoimmune disorders as well
as other diseases. Inhibitors of CatS are often covalent-
binding active site modifiers, although recently noncovalent
inhibitors have been disclosed.28-35 Crystal structure ana-
lyses of human CatS enzyme have revealed several relevant
binding pockets (known as S1-S5), and the regions of the
molecules that occupy these portions of the enzyme are
correspondingly termed P1-P5.36-39

Analysis began with a search of the ABCD data
warehouse,22 retrieving P2 pyrazole structures for which
human CatS enzymatic binding data (hCats pIC50) had been
generated. For the purpose of this discussion, we will focus
our attention on a subset of 1294 unique structures that were
tested in the assay. These molecules, which were specifically
chosen to illustrate the full capabilities of the tool, fall into
three main series related to the nature of the substituent on
the right-hand side of the pharmacophore (P1 and P3 bind-
ing regions): amines, thioethers, and alkynes (Figure 2), with
the variable positions defined as described in relevant patent
applications.31-33

Table 1. Context-Sensitive (Popup) Menu

menu item function

open open scaffold tree from a binary file

save as... save scaffold tree to a binary file

map map any unmapped nodes onto the

current document

fit rescale tree to fit in the visible window

lens turn magnification lens on/off

select select node under the mouse

unselect unselect node under the mouse

select all select all nodes in the tree

clear selection clear selection

rename... rename the clicked node

delete delete clicked node and connect its children

to its parent

delete branch delete clicked node along with all its children

delete all remove all nodes exceept the root

(and clear the root)

cut branch cut the subtree under the clicked node and

copy it onto the clipboard

copy branch copy the subtree under the clicked node

onto the clipboard

paste branch paste the subtree on the clipboard as a

child of the clicked node

paste branch as new paste the subtree on the clipboard

as a new tree

copy to clipboard copy scaffold tree to the clipboard as an image

print... print the tree; provides page setup, print

preview, and print options.

Table 2. Summary of Mouse Controls

action over node mode function

right down yes|no edit|pick display context-sensitive menu

control þ left down yes|no edit|pick move the entire tree

left down yes edit highlight node

left double click yes edit edit scaffold structure

shift þ left down yes edit highlight node and all of its children

left down þ move yes edit move highlighted nodes

left down þ move no edit draw selection lasso

alt þ left down yes edit create new child node

left down yes pick select

shift þ left down yes pick unselect

Table 3. Summary of Keyboard Shortcuts

shortcut function

escape switch between edit and pick modes

control-A select all

control-shift-A unselect all

control-C copy image to clipboard

control-R reset (fit to window)

control-D delete all nodes except the root (and clear

the root)

control-M map scaffolds onto current table

control-L turn magnifying lens on/off

plus zoom in

minus zoom out

shift-plus zoom in by a larger increment

shift-minus zoom out by a larger increment

arrow move selected nodes left/right/up/down

shift-arrow move selected nodes left/right/up/down by a

larger increment

control-arrow move entire tree left/right/up/down

control-shift-arrow move entire tree left/right/up/down

by a larger increment
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Application of Scaffold Explorer to CatS Inhibitor Pro-

gram. Using Scaffold Explorer, from the parent structure
shown at the center of the diagram in Figure 3 (the root
node), emanate three child nodes representing each of these
three series as different scaffolds. Mapping the data set onto
the tree reveals the population of each scaffold (indicated as a
number in parentheses below each node), from which is
immediately evident the relative paucity of amines within

this data set (65 amine compounds, compared to 442 alkynes
and 787 thioethers). Color-coding the nodes according to
average hCatS pIC50 values allows facile analysis of the
aggregate potency of the compounds within these three
scaffolds, with the scaffolds containing the most potent
compounds shown in red and those with the least potent
compounds shown in blue. At this highest level of analysis, it
is clear that all three of these scaffolds represent compounds

Figure 2. General structure of cathepsin S inhibitors and major series.

Figure 3. Scaffold tree representation of cathepsin S inhibitor series and subseries, color-coded by average hCatS inhibition (pIC50).
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with comparable potency, with average pIC50s in the range
of 6.8 to 7.2. The vertical scale to the right of each node
provides two types of information: the gray bar indicates
what fraction of total compounds fall under that particular
node, and the black tick-marks indicate the stratification of
biological data across the compounds constituting each node
(the scale is identical for each node and is the same as the
vertical color scale on the right side of the plot). As might be
expected for a large data set, each of the alkyne and thioether
series contain a large number of molecules with midrange
potency and a substantially smaller number of high-potency
analogues.

To establish a more refined understanding of SAR, this
approach of creating new child nodes representing more
specific substructures and mapping data onto them is per-
formed iteratively, thereby creating an increasingly complex
structural hierarchy, as shown in Figure 3. Among the
relevant scaffolds represented by nodes in this tree are those
involving variation of the P4 and P5 substituents and altera-
tion to the linker connecting the P5 substituent to the P2
pyrazole core. Examination of the alkyne series in more
detail using a magnified portion of this scaffold tree is
informative (Figure 4). Again using differential coloration
to explore variation in potency among the compoundswithin
the scaffolds, one terminal node within the alkyne series (the
“propyl linker” terminal node highlighted in yellow, deriving
from the “tertiary amine & amide P4” node) contains a large
number of molecules (155) with promising potency (average
hCatS pIC50 ∼ 7.2) and predominant clustering of com-
pounds toward the high end of the potency range. For a
more detailed understanding of the SAR of the compounds

constituting this terminal node, an SAR map20,21 is useful
(Figure 5). Pairing a scaffold tree with SAR maps can
provide elegant and complementary visualization of high-
level SAR trends and population densities formany scaffolds
as well as specific, detailed SAR within terminal nodes.

The two-dimensional matrix in Figure 5 displays the
various P5 substituents along the vertical axis and the P4
substituents along the horizontal axis, with the slider to the
right indicating that the P1 substituent is held constant as a
para-chlorobenzylamine; hCatS pIC50 values of compounds
are displayed as colored rectangles at the intersection points
of these substituents. The P4 and P5 substituents are sorted
according to molecular weight, with low-molecular-weight
substituents at the left and top of the axes. These data indi-
cate a general trend toward increasing potency with increas-
ing molecular weight of the P5 substituent, an unsurprising
feature given the lack of specific interactions proposed to be
relevant in the S5 region of the enzyme.34 More interesting is
the compound highlighted in Figure 5 containing a urea P4
substituent and a simple piperidine P5 moiety. These low-
molecular-weight fragments contribute to a molecule with
surprisingly high potency (hCatS pIC50=7.3). This type of
nonadditive SAR is of particular interest in selecting com-
pounds for advanced profiling, based on the desire to iden-
tifymolecules whichmight involve a higher degree of specific
interactions, allowing them to achievemore optimal physical
properties by limiting overall molecular weight and thus
enabling further studies with related structures.

Closer examination of the thioether portion of the scaffold
tree (Figure 6) reveals a cluster of 115 thioether compounds
(the “hydroxyl propyl linker” terminal node highlighted in

Figure 4. Scaffold tree representation of cathepsin S inhibitor alkyne subseries, color-coded by average hCatS inhibition (pIC50).
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yellow, derived from the “tertiary amine & amide P4” node)
with moderate potency, on average, as indicated by the
coloration of the node. Yet, the vertical scale to the right

of the node indicates that within this node are a number of
high-potency outliers, rendering what might otherwise be an
uninteresting terminal node instead one worth exploring in

Figure 5. hCatS inhibition (pIC50) of alkynes, sorted by R1 and R2 molecular weight, then by hCatS potency.

Figure 6. Scaffold tree representation of cathepsin S inhibitor thioether subseries, color-coded by average hCatS inhibition (pIC50).
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more depth. Once again, an SAR map helps to elucidate the
SARof this terminal node (Figure 7). The P4 substituents are
arrayed along the horizontal axis and the P3 substituents lie
along the vertical axis, both sorted according to molecular
weight with the low-molecular-weight substituents at the left
and top of the axes. On the basis of the positive findings from
the alkyne SAR map relating to the potency of molecules
with a piperidine P5 substituent, the slider to the right has
been used to fix the P5 substituent here as a piperidine.
Attention is quickly drawn to the high potency of a molecule
containing the relatively low molecular weight oxamide
moiety as a P4 substituent and a 4-fluoropiperidine P3
fragment. Whereas much larger P4 structures can afford
reasonable or, in many cases, poor potency, the oxamide
allows for remarkably high potency (hCatS pIC50=7.2) with
relatively lowmolecular weight, highlighting the potential of
the oxamide to form specific interactions in the S4 pocket, in
accord with published crystal structure analyses indicating
the presence of hydrogen bond donors in that region of the
enzyme.34

Conclusions

We described an interactive tool that allows medicinal
chemists to define arbitrary hierarchies of chemical scaffolds
and use them to explore and visualize their existing project
data. Our approach differs from previous automated scaffold
classification algorithms in that the scaffolds can be of
arbitrary complexity and their precise definition is controlled
entirely by the user. The only constraint that the tool enforces
in order to improve navigation is that each scaffold must
represent a more refined substructure than that of its parent
node. Scaffold trees can be dynamically edited when new
scaffolds or variations of existing ones are introduced and can

be interactively mapped to any collection of compounds to
explore structure-activity relationships across multiple che-
motypes. This is accomplished by allowing the user to aggre-
gate any biological or physicochemical property of interest at
the scaffold level and to display both the aggregate as well as
the individual properties of the molecules in each scaffold
class. The real utility of this tool comes from its interactivity
and its ability to simultaneously explore multiple views of the
data through linked visualizations. Our future plans include
extending this tool to serve a generalized decision tree thatwill
support a variety of partitioning functions beyond chemical
patterns.
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